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Three-component vorticity measurements in a
turbulent grid flow
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All components of the fluctuating vorticity vector have been measured in decaying
grid turbulence using a vorticity probe of relatively simple geometry (four X-probes,
i.e. a total of eight hot wires). The data indicate that local isotropy is more closely
satisfied than global isotropy, the r.m.s. vorticities being more nearly equal than the
r.m.s. velocities. Two checks indicate that the performance of the probe is satisfactory.
Firstly, the fully measured mean energy dissipation rate 〈ε〉 is in good agreement with
the value inferred from the rate of decay of the mean turbulent energy 〈q2〉 in the
quasi-homogeneous region; the isotropic mean energy dissipation rate 〈εiso〉 agrees
closely with this value even though individual elements of 〈ε〉 indicate departures
from isotropy. Secondly, the measured decay rate of the mean-square vorticity 〈ω2〉
is consistent with that of 〈q2〉 and in reasonable agreement with the isotropic form of
the transport equation for 〈ω2〉. Although 〈ε〉 ' 〈εiso〉, there are discernible differences
between the statistics of ε and εiso; in particular, εiso is poorly correlated with either
ε or ω2. The behaviour of velocity increments has been examined over a narrow
range of separations for which the third-order longitudinal velocity structure function
is approximately linear. In this range, transverse velocity increments show larger
departures than longitudinal increments from predictions of Kolmogorov (1941). The
data indicate that this discrepancy is only partly associated with differences between
statistics of locally averaged ε and ω2, the latter remaining more intermittent than the
former across this range. It is more likely caused by a departure from isotropy due
to the small value of Rλ, the Taylor microscale Reynolds number, in this experiment.

1. Introduction
Measurements of one, two and in some cases all three components of the vorticity

vector ωi (≡ εijkuk,j , where εijk is the alternating tensor and uk,j = ∂uk/∂xj; unless
specifically noted, the summation convention applies) have been reported in different
flows using different types of hot-wire probes (e.g. Wallace & Foss 1995; Antonia,
Zhu & Shafi 1996b; Zhu & Antonia 1996, 1997). An accurate measurement of ωi is
important for studying various aspects of turbulence, for example the turbulent/non-
turbulent interface and small-scale intermittency. In this context, it is reasonable to
turn to grid turbulence when seeking to validate the performance of a new probe,
especially one which measures a quantity as complex as vorticity. The existence
of a region, first occurring some distance downstream from the grid (after the
grid-generated wakes have merged), which can be considered to be approximately
homogeneous and isotropic (see, for example, Mohamed & LaRue 1990), allows
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considerable simplifications to the transport equations for the mean turbulent energy
〈uiui〉 ≡ 〈q2〉 (angular brackets denote time averaging) and the mean-square vorticity
or enstrophy 〈ωiωi〉 ≡ 〈ω2〉. The equation describing the rate of change of 〈q2〉
reduces to

−U1

d

dx1

(
1

2
〈q2〉

)
= 〈ε〉, (1.1)

where U1 is the (constant) longitudinal mean velocity.
Von Kármán (1937) first derived the equation describing the rate of change of 〈ω2〉

for homogeneous isotropic turbulence

−U1

d〈ω2〉
dx1

= 2〈ωiωjui,j〉+ 2ν〈ωi∇2ωi〉, (1.2)

where ν is the kinematic viscosity. The first term on the right corresponds to the
creation of 〈ω2〉 through the deformation of vortex tubes and the second term, which
represents the destruction of 〈ω2〉 through the action of viscosity, is related to the
mean palinstrophy or mean-squared value of the curl of the vorticity vector (e.g.
Frisch 1995; Lesieur 1997). Von Kármán & Howarth (1938) pointed out that (1.2) is
equivalent to the limiting form of the equation describing the transport of the two-
point longitudinal velocity correlation function f in homogeneous isotropic turbulence
when the separation between the two points approaches zero. Taylor (1938) quantified
the importance of the vortex stretching term through measurements of 〈u2

1〉 and f.
Batchelor & Townsend (1947, hereafter BT), used hot-wire measurements of u1 and
of its first two temporal derivatives (∂u1/∂t and ∂2u1/∂t

2) downstream of a grid to
estimate the isotropic forms of all the terms in (1.2). Specifically, they considered

−U1

d〈ω2〉
dx1

= − 7√
5
〈ω2〉3/2S − 14√

5
〈ω2〉3/2 G

Rλ
(1.3)

with 〈ω2〉 replaced by its isotropic value, i.e. 15〈u2
1,1〉. In (1.3), S is the skewness of u1,1

(like Taylor 1938, BT emphasized the relationship between the vorticity production
term and the probability distribution of the rate of extension of fluid line elements

aligned in any given direction), G is the ratio 〈u2
1〉〈u2

1,11〉/〈u2
1,1〉

2
(note that u1,11 ≡

∂2u1/∂x
2
1) and Rλ is the Taylor microscale Reynolds number (Rλ = 〈u2

1〉
1/2
λ/ν, with

the Taylor microscale λ ≡ 〈u2
1〉

1/2
/〈u2

1,1〉
1/2

). The measurements of BT indicated that

both S and G/Rλ were approximately constant throughout the decay so that 〈ω2〉1/2
varied inversely proportional to x1 (the distance from the grid), namely

〈ω2〉1/2 ∼ x−1
1 . (1.4)

It should be noted that this ‘−1’ decay rate is consistent with the ‘−1’ decay rate
exhibited by 〈u2

1〉 in BT’s experiment. In general, 〈q2〉 ∼ x−n1 with n typically in the
range 1 to 1.3 (e.g. Batchelor & Townsend 1948; Comte-Bellot & Corrsin 1966), so
that 〈ε〉 ∼ x−1−n and, if the turbulence is homogeneous (〈ε〉 = ν〈ω2〉), 〈ω2〉 ∼ x−1−n

(e.g. Lesieur 1997). BT concluded that their measurements satisfied (1.3) with sufficient
accuracy. This conclusion appears reasonable since all the quantities in (1.3), with
〈ω2〉 replaced by 〈u2

1,1〉, are primarily associated with the high-wavenumber part of
the u1 spectrum and are therefore more likely to satisfy isotropy than the individual
components of 〈uiuj〉.

The direct measurement of vorticity should provide a more valid corroboration of
(1.3) since vorticity is closely associated with the small-scale structure of turbulence
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(e.g. Corrsin & Kistler 1954). Kistler (1952) tested the Kovasznay-type vorticity (ω1)
probe in grid turbulence; he noted that the high-wavenumber end of the spectrum
satisfied isotropy (see figure 2 of Wallace 1986). Kit et al. (1988) and Fan (1991)
examined the decay of 〈ω2

1〉 in grid turbulence as a test of their probes. Although an
x−1

1 decay rate was found in both cases, in apparent agreement with relation (1.4),
this result is strictly inconsistent with the nonlinear decay rate of 〈u2

1〉 (i.e. 〈u2
1〉 ∼ x−n1

where n = 1.27 for the data of Fan; Kit et al. did not report the decay of 〈u2
1〉). One

would therefore have to question the accuracy of the 〈ω2
1〉 data obtained by these

authors.
The first objective of the present work was to validate the performance of a three-

component vorticity probe (described in §2) by comparison with (1.1) and (1.3). The
probe, with eight hot wires, is relatively simpler than the twelve-hot-wire probe used
by Tsinober, Kit & Dracos (1992, hereafter TKD), or the twenty-hot-wire probe of
Lemonis (1995). Both TKD and Lemonis made measurements in grid turbulence; the
quality of the present data can therefore be assessed against these measurements.

TKD gave several reasons in support of the idea that grid turbulence is one of
the most suitable flows for studying the universal properties of turbulence, especially
its small-scale structure. Indeed, quite a number of direct numerical simulations have
been carried out for either forced or decaying isotropic turbulence (e.g. Kerr 1985;
Yamamoto & Hosokawa 1988; She, Jackson & Orszag 1990; Vincent & Meneguzzi
1991; Jimenez et al. 1993; Chen, Sreenivasan & Nelkin 1997a; Chen et al. 1997b;
Boratav & Pelz 1997) with a view to study the kinematics and dynamics of the
small-scale structure. Correspondingly, the second objective of the present work is
to compare statistics of ε and ω2, the instantaneous energy dissipation rate and
enstrophy respectively. An attempt is made to relate the dependence on r of εr and
ω2
r (the subscript r denotes linear averaging over a distance r) to that of the velocity

increments δu1 [≡ u1(x1 + r) − u1(x1)] and δu2 [≡ u2(x1 + r) − u2(x1)] when the
separation r is in the inertial range. δu1 and δu2 are identified here as the longitudinal
and transverse increments. The observation that transverse velocity increments scale
differently from longitudinal velocity increments is currently receiving a great deal of
attention (e.g. Herweijer & van de Water 1995; Noullez et al. 1997; Boratav & Pelz
1997; Boratav 1997; Chen et al. 1997b; Antonia & Pearson 1997; Pearson & Antonia
1997; Camussi & Benzi 1997; Dhruva, Tsuji & Sreenivasan 1997; Grossman, Lohse
& Reeh 1997). The difference in scaling, if suitably corroborated, may imply different
roles played by ε and ω2 (e.g. Boratav & Pelz 1997; Chen et al. 1997b) and would need
to be taken into account in small-scale turbulence models. However, there is a need
to reconcile the results obtained from simulations (e.g. Boratav & Pelz 1997; Chen
et al. 1997b) with those inferred from measurements in grid turbulence (Kahalerras,
Malecot & Gagne 1996; Camussi et al. 1996; Kahalerras 1997), the latter indicating
approximate equality of power-law exponents for longitudinal and transverse velocity
increments. This discrepancy is addressed in some detail in §7 where we consider the
scaling of these increments in conjunction with the behaviour of locally averaged
statistics of ε and ω2.

2. Experimental details
Measurements were made along the centreline of the wind tunnel at several loca-

tions downstream of a biplane grid (x1/M = 20 ∼ 80, where x1 is measured from
the grid plane and the mesh size M is 24.76 mm). The grid consists of rods of
4.76 mm diameter, yielding a solidity of about 0.35. The longitudinal mean velocity
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Figure 1. Three-component vorticity probe. d2 ' d3 ' 0.6 mm; S1 ' 0.6 to 1.2 mm; S2 = 2.1 mm;
S3 = 2.2 mm; β ' 45◦; all wires have a diameter of 2.5 µm and length of 0.5 mm. (The velocity
fluctuations measured by each X-probe are assumed to be at the centre of the probe.)

U1 was 12.3 m s−1 (constant throughout the working section within ±3%) and the
Reynolds number RM (≡ U1M/ν) was 20 300. At this speed, the Kolmogorov length
scale η ≡ ν3/4/〈ε〉1/4 varies from 0.17 mm at x1/M = 20 to 0.4 mm at x1/M = 80.
Although the isotropic value of 〈ε〉 was used for estimating η, 〈ε〉iso ' 〈ε〉 (see §5) and
this estimate is therefore reliable.

The vorticity probe consists of four X-probes (figure 1), two in the (x1, x2)-plane and
separated in the x3-direction; the other two in the (x1, x3)-plane and separated in the
x2-direction (see also Zhu & Antonia 1996, 1997). The separation between two inclined
wires in each X-probe is di ' 0.6 mm (i = 2, 3). The separations between centres of
X-probes are S2 = 2.1 and S3 = 2.2 mm in the x2- and x3-directions, respectively. The
effective angle for each inclined wire was about 45◦. For the present flow conditions,
the ratio of the largest wire separation (2.2 mm) of the probe to the Kolmogorov
length scale varies between about 13 (x1/M = 20) and 5.7 (x1/M = 80). Because of
the intrinsically poor spatial resolution of the four-X-wire probe, measurements were
also made for ω2 and ω3 respectively with a finer resolution four-wire probe. The
four-wire probe, described in more detail in Antonia et al. (1996b), consists of a single
X-wire whose centre is straddled by parallel hot wires (see sketch in figure 2); the
probe is similar in design to that used by Foss & Haw (1990). The largest separation
for this probe is 0.9 mm (the distance between the parallel hot wires). The ratio
of this separation to η varies between 5.3 (x1/M = 20) and 2.3 (x1/M = 80). The
effective angles for the X-wire are about 45◦. The probe measures ω3 when the X-wire
plane coincides with the (x1, x2)-plane; after a 90◦ rotation, it measures ω2. To study
the scaling behaviour of the longitudinal and transverse velocity increments, a single
X-wire probe was also used at x1/M = 70 to measure u1 and u2. The separation of
the two wires of the X-wire probe was 0.72 mm. The effective angles were about 40◦.
All the wires were etched from Wollaston (Pt-10% Rh) of a diameter of 2.5 µm with
an active length of about 0.5 mm; the length to diameter ratio is about 200, sufficient
to minimize end conduction losses.

The hot wires were operated with in-house constant temperature circuits at an
overheat ratio of 0.5. Output signals from the anemometers were passed through buck
and gain circuits and low-pass filtered at a cut-off frequency fc of 5 kHz ∼ 10 kHz.
fc was chosen after examining the spectrum of ∂u1/∂t and identifying the onset
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Figure 2. One-component vorticity probe. S2 = 0.9 mm; S3 = 0.85 mm; β ' 45◦; all wires have a

diameter of 2.5 µm and length of 0.5 mm.

of electronic noise (the procedure used follows closely that outlined in Antonia,
Satyaprakash & Hussain 1982). The value of fc was generally close to U1/2πη, which
is commonly identified as the Kolmogorov frequency fk . The filtered signals were
subsequently sampled at a frequency of fs ≈ 2fc for vorticity measurements and 8fc
for the single X-wire measurement into a PC (IBM compatible Pentium 70) using a
12 bit A/D converter. The record duration was 65 s for the former and 210 s for the
latter. Yaw and velocity calibrations were also carried out on the PC; the majority of
the data processing was done on a VAX 8550 computer.

It is assumed that each X-probe measures two velocity fluctuation components at
the centre of the probe. While measured velocity components can be significantly in
error when velocity gradients are large (e.g. Vukoslavcevic & Wallace 1981; Kawall,
Shokr & Keffer 1983; Hirota, Fujita & Yokosawa 1988; Park & Wallace 1993; Zhu
& Antonia 1995), the mean velocity gradient is zero in the present flow. The errors
in neglecting the fluctuating instantaneous velocity gradients are estimated (see e.g.
Hirota et al. 1988) to be about 1 and 3% for u′1 and u′2 (or u′3) respectively using a
range of hot-wire yaw factors corresponding to the present experimental conditions.
The binormal cooling effect on each X-probe has also been neglected. According to
Tutu & Chevray (1975) (see also Camussi et al. 1996), neglecting binormal cooling
only results in an error of 1–3% for u′1, u

′
2 (a prime denotes the r.m.s. value) and

〈u1u2〉 when the local turbulence intensity is about 10%. The present values of u′i/U1

are small (< 2% for 20 6 x1/M 6 80) and therefore the error in neglecting binormal
cooling should also be negligible.

The three vorticity components were obtained from the measured ui of the four
X-probes using the following approximation:

ω1 = u3,2 − u2,3 '
∆u3

S2

− ∆u2

S3

, (2.1)

ω2 = u1,3 − u3,1 '
∆u1

S3

+
∆u3

S1

, (2.2)

ω3 = u2,1 − u1,2 ' −
∆u2

S1

− ∆u1

S2

, (2.3)

where ∆u3 and ∆u1 in (2.1) and (2.3) respectively are velocity differences between
X-probes a and c (figure 1); ∆u2 and ∆u1 in (2.1) and (2.2) respectively are velocity
differences between X-probes b and d. Derivatives in the x1-direction were estimated
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using Taylor’s hypothesis, i.e. ∂/∂x1 = −U1∂/∂t. The separation S1 is identified
with U1∆t, where ∆t (' f−1

s ) is the time interval between consecutive samples. A
forward differencing scheme was used to convert temporal to spatial derivatives
with S1 ' 1

2
S2 ' 1

2
S3 for x1/M > 40. While it would have been preferable to use

S1 ' S2 ' S3 (Wallace & Foss 1995), S1 is dictated here by the choice of fs (' 2fk).
Details about the data reduction algorithm of the four-wire (one-component) vorticity
probe are given in Antonia et al. (1996b).

Experimental uncertainties were estimated for all measured quantities. In the case of
U1 and u′i (i = 1, 2, 3), estimates were inferred from errors in the hot-wire calibration
data as well as the scatter (20 to 1 odds) observed in repeating the experiment a
number of times. The uncertainty for U1 was about ±2%, while uncertainties for u′1,
u′2 and u′3 were about ±4.5%, ±5% and ±5%, respectively. The level of agreement
in u′1 from the four X-probes is ±2%; u′2 (or u′3) from X-probes b and d (or a and c)
also agree within ±2%. Uncertainties for wire separations Si were ±2% (i = 1) and
±5% (i = 2 and 3). Using the previous estimates, uncertainties for 〈q2〉, 〈ε〉 and 〈ω2〉
were estimated by the method of propagation of errors (e.g. Kline & McClintock
1953; Moffat 1985 1988). The resulting maximum uncertainties for 〈q2〉, 〈ε〉 and
〈ω2〉 were about ±7%, ±14% and ±11%, respectively. The uncertainties in 〈ε〉 and
〈ω2〉 were estimated after these two quantities were corrected for the effect of spatial
resolution; the magnitudes of the corrections were larger than the uncertainties (see
§3), underlining the need to properly account for the effect of systematic errors on
velocity derivative data.

3. Corrections due to spatial resolution
Before presenting statistics for ui or ωi, it is relevant to address the effect the imper-

fect spatial resolution of the probe has on the measurements. The high-wavenumber
part of the velocity spectrum and, more especially, the vorticity spectrum is expected
to be attenuated due to this imperfect resolution. Detailed expressions for this atten-
uation are given in Antonia et al. (1996b) for the one-component vorticity probe and
Zhu & Antonia (1996) for the three-component vorticity probe. Only a brief outline
of the method is presented here; the emphasis is on the attenuation of φωi(k1) or the
spectral density of ωi, defined such that

∫ ∞
0
φωi(k1)dk1 = 〈ω2

i 〉 (no summation on i)
where k1 is the wavenumber in the x1-direction. A measure of this attenuation is
given by the ratio

Rωi =
φmωi(k1)

φωi(k1)
=

∫∫ ∞
−∞
φmωi(k)dk2dk3∫∫ ∞

−∞
φωi(k)dk2dk3

(3.1)

where k is the wavenumber vector with magnitude k ≡ (k2
1 + k2

2 + k2
3)1/2, k2 and k3

are the wavenumbers in the x2 and x3-directions respectively, φmωi(k1) is the measured
spectrum and φωi(k1) is the ‘true’ or ‘correct’ spectrum. For each value of i, φωi(k)
can be written in terms of φij(k), the energy spectrum tensor. For example, for i = 2,

φω2
(k) = φu1,3

(k) + φu3,1
(k)− 2Cou1,3u3,1

(k) (3.2)

and

φui,m(k) = k2
mφii(k), (3.3)

Coui,muj,m = kmknφij(k). (3.4)
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Figure 3. Spectral correction ratios for the three-component vorticity probe with a specific choice
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In the case of φmω2
(k), its components φmu1,3

(k), φmu3,1
(k) and Comu1,3u3,1

(k) can also be
written in terms of φij(k) and all the geometrical parameters of the probe (see (27)–
(29) in Zhu & Antonia 1996). To allow the integrals in (3.1) to be evaluated, isotropy
is assumed (e.g. Wyngaard 1971) so that

φij(k) = φij(k) =
E(k)

4πk4
(k2δij − kikj), (3.5)

where E(k) is the three-dimensional energy spectrum, here inferred from φu1
(k1) via

the isotropic expression

E(k) = k2

[
∂2φu1

∂k2
1

]
k1=k

− k
[
∂φu1

∂k1

]
k1=k

. (3.6)

Other possibilities are available for estimating E(k), but the above expression seems
optimum since φu1

(k1) can be obtained reliably using a single hot wire of length
comparable to η.

It should also be noted that the high-wavenumber part of φωi(k1) (i = 2 or 3)
is dominated by streamwise derivatives (Antonia et al. 1996b). Since (3.1) involves
integration with respect to k2 and k3, the streamwise derivative spectra can be corrected
without invoking isotropy or requiring a choice of E(k).

Figure 3 shows the dependence of Rωi on k∗1 (the superscript * denotes normalization
by the Kolmogorov length scale η and the Kolmogorov velocity scale UK ≡ ν1/4〈ε〉1/4)
for a particular choice of probe parameters (d∗2 = d∗3 = 2; S∗1 = S∗2 = S∗3 = 4; all
effective angles are assumed equal to 45◦ and wire length effects have been neglected).
It is clear that φω1

is much less attenuated (for k∗1 & 0.2) than φω2
or φω3

. The
attenuation of φω , the sum of the three vorticity spectra, is only slightly smaller
than that for φω2

or φω3
. For all components, the attenuation remains constant for

k∗1 . 0.02. The distributions of Rωi in figure 3 imply an attenuation of about 20% for
〈ω2

1〉 and about 33% for 〈ω2
2〉 or 〈ω2

3〉.
Relatively convincing support for the above procedure is provided by figure 4.

After correction, the ω3 spectra from the one-component and three-component probes
collapse to a good approximation (the uncorrected spectra from the two probes are
also shown in figure 4).
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4. Statistics of ui and ωi
Figure 5 shows the probability density functions (p.d.f.s) of ui and ωi. The p.d.f.s of

ωi (i = 1,2,3) follow each other remarkably well, as is also the case for the p.d.f.s of ui.
Whereas the p.d.f.s of ui are almost Gaussian, the p.d.f.s of ωi are nearly exponential
for |ωi/ω′i | > 3. The near symmetry of the p.d.f.s, of both ui and ωi, implies that the
skewness is quite small, which is consistent with isotropy.

The present values of 〈u2
1〉, 〈u2

2〉 and 〈u2
3〉 show a clear departure from isotropy, with

u2
3 about 14% smaller than u2

1 and u2
2 about 33% smaller than u2

1. Comte-Bellot &

Corrsin (1966) found that u2
1 was about 12 ∼ 15% greater than u2

2. TKD and Lemonis
(1995) reported values of 〈u2

1〉 typically 23% larger than 〈u2
2〉 in the range 30 6
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x1/M 6 90. In the present experiment, the correlation coefficients 〈u1u2〉/〈u2
1〉

1/2〈u2
2〉

1/2
,

〈u1u3〉/〈u2
1〉

1/2〈u2
3〉

1/2
, 〈u2u3〉/〈u2

2〉
1/2〈u2

3〉
1/2

were typically –0.017, 0.02 and 0.08. These
are sufficiently small to assume that the shear stresses are all equal to zero (consistent
with symmetry; isotropy would also require that 〈u1u2〉 = 0). They are also smaller
than the values (0.10–0.15) quoted by TKD for the first two coefficients.

Figure 6 shows the present distributions of (U1/u
′
i)

2 as a function of x1/M. Also
shown are the data of Comte-Bellot & Corrsin (1966), Van Atta & Chen (1969),
Mohamed & LaRue (1990), Fan (1991) and TKD. The Reynolds number RM for
these studies are 33 900, 25 600, 14 000, 12 800 and 28 000, respectively. Comte-Bellot
& Corrsin (1966) noted that (

U

u′i

)2

∼
(
x1

M
− x0

M

)n
, (4.1)

where x0 is the virtual origin. They also found that the values of x0 and n differed
slightly for each velocity component. However, if x0 is not subtracted from the data,
each data set follows a straight line in the region x1/M > 30 and these lines have
approximately the same power law (n ' 1.28). The magnitude of n depends normally
on the choice of x0. Mohamed & LaRue (1990) estimated x0 and n by selecting data
only in the range where the ratio −U1(d〈q2〉/dx1)/2〈ε〉 (with 〈ε〉 = 〈εiso〉 = 15ν〈u2

1,1〉)
is nearly 1. This method was also used here for estimating x0. The present data (see
§4) show that the ratio is indeed equal to 1 (±10%) for x1/M > 30. Using the data
in this range and the trial and error method suggested by Comte-Bellot & Corrsin
(1966), we estimated that x0/M = 3 and n = 1.28. Varying x0/M by ±1 results in
only a ±3% change in n.

Figure 7 shows spectra of the three velocity components, i.e. φ∗u1
, φ∗u2

and φ∗u3

which have been corrected for the effect of spatial resolution of the X-probes and the
isotropic calculation of the spectra of lateral components. Because of the solenoidality
of ui in an incompressible flow (Batchelor 1953; Monin & Yaglom 1975; Antonia &
Kim 1994), isotropic relations between velocity spectra can be written as

φ∗u2
= φ∗u3

=
1

2

(
1− k∗1

∂

∂k∗1

)
φ∗u1
. (4.2)
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Figure 7. Spectra of velocity fluctuations. — - —, i = 1; - - -, 2; – –, 3; —, isotropic calculation for
i = 2 or 3 using (4.2).

There is an analogous relation for the vorticity spectra, since vorticity is solenoidal,
independently of whether the flow is incompressible or not. The measured φ∗u2

and φ∗u3

distributions show a significant departure from (4.2) at small wavenumbers, reflecting
the anisotropy of larger scales. The level of agreement between calculation and
measurement for k∗1 > 0.1 is comparable to that shown in figure 3 of TKD.

Uncorrected and corrected spectra of ωi are shown and compared with isotropic
calculations in figure 8. For the isotropic relation, the spectra φωi can be written in
terms of φu1

or φu1,1
(e.g. Van Atta 1991; Kim & Antonia 1993)

φω1
(k1) = φu1,1

(k1) + 4

∫ ∞
k1

φu1,1
(k)

k
dk, (4.3)

φω2
(k1) = φω3

(k1) =
5

2
φu1,1

(k1)−
k1

2

∂φu1,1
(k1)

∂k1

+ 2

∫ ∞
k1

φu1,1
(k)

k
dk. (4.4)

As already indicated in figure 4, the correction for φω1
is smaller than that for φω2

or φω3
. The distributions of corrected φ∗ω2

and φ∗ω3
are very close to each other for

nearly all values of k∗1. The agreement between corrected spectra and corresponding
isotropic calculations is quite good, reflecting the association of vorticity mainly with
small scales.

5. Transport equations for 〈q2〉 and 〈ω2〉
The accuracy with which 〈ε〉 and 〈ω2〉 are estimated by the three-component

vorticity probe, can be assessed. For decaying grid turbulence, the transport equation
for 〈q2〉 simplifies to (e.g. Tennekes & Lumley 1972)

U1

d 1
2
〈q2〉

dx1

+
d

dx1

(
1
2
〈q2u1〉

)
+

d

dx1

(〈pu1〉) + 〈ε〉 = 0. (5.1)

Only the assumption of homogeneity in the transverse (x2, x3)-plane is required for
(5.1). Tennekes & Lumley argued that d(〈pu1〉+ 1

2
〈q2u1〉)/dx1 is negligible compared
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Figure 8. Spectra of vorticity fluctuations. – –, Uncorrected; - - -, corrected; — - —, isotropic
calculation using (4.3) and (4.4). (a) ω1; (b) ω2; (c) ω3.

with the other terms due to the small velocity fluctuations. Here, 〈u2
1〉

1/2
/U1 is less

than 1% at x1/M = 80; the second term on the left of (5.1) was estimated directly
and found to be about 3 orders of magnitude smaller than the first term. Since the
third term is likely to be comparable to the second term, it is reasonable to assume
that (1.1) is a good approximation to (5.1).

The mean enstrophy 〈ω2〉 is given by

〈ω2〉 = εijkεimn〈uk,jun,m〉
= 〈u2

1,2〉+ 〈u2
2,1〉+ 〈u2

1,3〉+ 〈u2
3,1〉+ 〈u2

2,3〉+ 〈u2
3,2〉

− 2〈u1,2u2,1〉 − 2〈u1,3u3,1〉 − 2〈u2,3u3,2〉. (5.2)
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Figure 9. Decay of turbulent energy 〈q2〉/U2
1 with x1/M. •, Present; �, estimated from TKD;

—, ∼ (x1/M)−1.28; — - —, ∼ (x1/M)−1.18. Error bars indicate experimental uncertainties.

All of the velocity gradients which appear on the right of (5.2) can be estimated. The
homogeneous value of 〈ε〉 (≡ ν〈ω2〉) can therefore also be obtained.

The full mean dissipation rate 〈ε〉 = 2ν〈sijsij〉, where sij is the turbulent rate of
strain 1

2
(ui,j + uj,i), can be written

〈ε〉 = ν{2〈u2
1,1〉+ 2〈u2

2,2〉+ 2〈u2
3,3〉+ 〈u2

1,2〉+ 〈u2
2,1〉+ 〈u2

1,3〉
+ 〈u2

3,1〉+ 〈u2
2,3〉+ 〈u2

3,2〉+ 2〈u1,2u2,1〉+ 2〈u1,3u3,1〉+ 2〈u2,3u3,2〉}. (5.3)

All terms on the right-hand side of (5.3) can be estimated except for the second and
third terms. The quantities u2,2 and u3,3 are not measured with the present probe; they
can however be estimated by assuming incompressibility, namely

u1,1 + u2,2 + u3,3 = 0 (5.4)

or

2〈u2
2,2〉+ 2〈u2

3,3〉 = 2〈u2
1,1〉 − 4〈u2,2u3,3〉. (5.5)

Assuming homogeneity, the last term on the right of (5.5) can be replaced by
−4〈u2,3u3,2〉 since

〈u2,2u3,3〉 = 〈u2,3u3,2〉. (5.6)

Substitution of (5.5) and (5.6) into (5.3) then yields

〈ε〉 = ν{4〈u2
1,1〉+ 〈u2

1,2〉+ 〈u2
2,1〉+ 〈u2

1,3〉+ 〈u2
3,1〉

+ 〈u2
2,3〉+ 〈u2

3,2〉+ 2〈u1,2u2,1〉+ 2〈u1,3u3,1〉 − 2〈u2,3u3,2〉}. (5.7)

The decay of 〈q2〉/U2
1 with x1/M, is shown in figure 9. A least-squares fit to the data

in the range x1/M > 30 indicates that 〈q2〉 ∼ (x1/M)−1.28, an expected result since all
the three normal stresses decay as (x1/M)−1.28 (figure 6). The TKD data for 〈q2〉 are
also included in figure 9; they indicate an exponent of −1.18 (note that the scatter is
considerably larger than for the present data).

The values of 〈ε〉 inferred from (5.7) (all the variances and covariances in this
expression were evaluated by integrating the corrected spectra and cospectra) are
shown in figure 10. The decay rate of 〈ε〉, with an exponent of −2.28, is clearly
consistent with the decay rate of 〈q2〉 (figure 9). The values of 〈ε〉 should be compared
properly with (1.1), i.e. the solid line should represent −U1 d( 1

2
〈q2〉)/dx1. For TKD,
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Figure 10. Decay of 〈ε〉M/U3
1 with x1/M. Present: 4, 〈ε〉; O, 〈εiso〉; —, ∼ (x1/M)−2.28, left-hand

side of (1.1). (Inferred from) TKD: �, 〈ε〉; ∗, 〈εiso〉; — - —, ∼ (x1/M)−2.18, left-hand side of (1.1).
(Error bars for 〈ε〉 are not shown in this figure to avoid crowding.)

〈ε〉 at 3 values of x1/M also lie on the line corresponding to the left-hand side of (1.1)
(note that the slope is −2.18); this level of agreement is rather surprising since spatial
resolution corrections were not applied to these data. The values of 〈εiso〉, shown in
figure 10, appear to be in even better agreement with (1.1). Although 〈ε〉 ' 〈εiso〉, the
individual components of 〈ε〉 exhibit a departure from isotropy. The ratios plotted
in figure 11 should all be equal to 1 (horizontal solid line) if isotropy were satisfied.
The variances are generally within ±10% (the dashed horizontal lines correspond to
values of 1.1 and 0.9) of their isotropic values; since the deviation can be of either
sign, this has a compensating effect in terms of producing a near equality between
〈ε〉 and 〈εiso〉. A similar compensation can be seen in the data of TKD and Lemonis.
The covariances in figure 11 show the largest departures from isotropy but their
contributions to 〈ε〉 are smaller than those of the variances.

The quantity (ω′M/U1)
−1 is shown in figure 12 as a function of x1/M. In the range

30 6 x1/M 6 80, its rate of increase is x1.14
1 , consistent with the x−2.28

1 variation of
〈ε〉. (The TKD data suggest an exponent less than 1, but the scatter of the data is

large). Note that (ω′M/U1)
−1 has been multiplied by R

1/2
M to allow a more meaningful

comparison with the data of TKD and Lemonis which are at slightly different
Reynolds numbers. Although self-preservation is expected when 〈ε〉 is normalized
by the relevant scales (for simplicity, M and U1 are used here, a more rigorous
normalization would be based on L, the integral length scale, and u′1, as noted by
Sreenivasan 1984), 〈ε〉 = ν〈ω2〉 in homogeneous turbulence and the Reynolds number
needs to be taken explicitly into account when examining 〈ω2〉 for self-preservation
(e.g. Antonia, Rajagopalan & Zhu 1996a). It is also of interest to compare the present
data for (ω′1M/U1)

−1 with the larger body of previously published data for this
quantity in the same flow (figure 13). For the present data, the power-law exponent
is about 1.14, which is consistent with the x−2.28

1 variations of 〈ε〉. As noted in §1,
the data of Kit et al. (1988) and Fan (1991) indicate an exponent of 1, which is
inconsistent with the measured exponent of 1.27 for the decay of u′1

2 reported by
Fan.

Since velocity derivatives receive a larger contribution from the high-wavenumber
part of the spectrum than velocity fluctuations, ωi should provide a better check for
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Figure 11. Ratios of mean-square values of velocity derivatives; in each case the isotropic value
(solid line) is 1. Dashed lines correspond to values of 1.1 and 0.9, i.e. ±10% of isotropic value.
(a) O, α = 〈u2

1,3〉; �, 〈u2
2,1〉; 4, 〈u2

1,2〉. (b) O, α = 〈u2
3,2〉; �, 〈u2

2,3〉; 4, 〈u2
3,1〉. (c) O, α = −2〈u1,3u3,1〉;

�, −2〈u2,3u3,2〉; 4, −2〈u1,2u2,1〉. Here and in subsequent figures, error bars are shown for one data
set only to avoid crowding. Similar uncertainties apply to the other data sets.

local isotropy than ui. Assuming local isotropy, 〈ω2
1〉 = 〈ω2

2〉 = 〈ω2
3〉 = 5〈u2

1,1〉. Figure
14 shows that this equality is reasonably satisfied for the present data (14a) and those
of TKD (14b), although the latter exhibit relatively large scatter at x1/M = 38 and
64. The slight difference in magnitude of the present vorticity components may be
due to the uncertainty (±11%) and the slight departure from local isotropy.



Three-component vorticity measurements in a turbulent grid flow 43

10 20 40 60 100
x1/M

101

102

103

(ω
′M

/U
1)

–1
 R

M1/
2

(x1/M)1.14 (present)

(x1/M)0.98 (TKD)

Figure 12. Variation of (ω′M/U1)−1R
1/2
M with x1/M. •, Present; �, TKD; ∗, Lemonis (1995);

—, ∼ (x1/M)1.14; — - —, ∼ (x1/M)0.98. Error bars indicate experimental uncertainties.

10 20 40 60 100
x1/M

101

102

103

(ω
1′M

/U
1)

–1
 R

M1/
2

(x1/M)1.14

104

Figure 13. Variation of (ω′1M/U1)−1R
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4, Kit et al. (1988); —, ∼ (x1/M)1.14. Error bars indicate experimental uncertainties.

Equation (1.3) can be rewritten as

−U1

d(1/ω′)

dx1

= − 7

6
√

15

(
S +

2G

Rλ

)
. (5.8)

The skewness of u1,1 is about −0.4 in the range 20 6 x1/M 6 80, in close agreement
with that reported by BT. The evaluation of G requires 〈u2

1,11〉 to be estimated. The
latter quantity can be inferred from the spectrum of u1, via

〈u2
1,11〉 =

∫ ∞
0

k4
1φu1

dk1. (5.9)

To obtain satisfactory closure of the integrand k4
1φu1

, the measured distribution of
φu1

needs to be extrapolated to higher wavenumbers since the present data stop at
k∗1 ' 0.9. For this purpose, the φu1

data of Comte-Bellot & Corrsin (1971) have been
used. There is quite satisfactory agreement between the present measurements and
those of Comte-Bellot & Corrsin for k∗1 6 0.9. An eighth-order polynomial fit (with a
standard deviation of about ±0.01) to the present data (on a log-log plot), shown as
a dashed line in figure 15, follows the Comte-Bellot & Corrsin data well. The fit was
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Figure 15. u1 spectrum and comparison with Comte-Bellot & Corrsin (1971). —, Present;
�, Comte-Bellot & Corrsin; – –, eighth-order polynomial fit to the present data.

therefore used to extrapolate the present data so as to obtain more reliable estimates
of 〈u2

1,11〉 (and also 〈u2
1,1〉) than if the integration were restricted to k∗1 6 0.9. (The

extrapolated portion in figure 15 represents about 2% of the total area under the
extrapolated curve.)
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Figure 16. Variation of −S , G and Rλ with x1/M and terms in (5.8). ◦, −S; �, G; 4, Rλ; O,
2G/Rλ; —, G calculated using (5.10). +, right-hand side of (5.8); — - —, left-hand side of (5.8)
inferred from figure 12. Error bars indicate experimental uncertainties.

Figure 16 shows distributions of S , G and Rλ. For isotropic turbulence, these
quantities should satisfy the relation

G =
27

7
− RλS

2
, (5.10)

where the constant (27/7) on the right-hand side of (5.10) differs from that (30/7)
given in BT due to the difference in the decay exponents for 〈q2〉 between the two
experiments. While the directly measured values of G depart from the values obtained
from (5.10) at small x1/M, the agreement improves as x1/M increases.

Justification of (5.8) is also presented in figure 16 by comparing the two sides of
this equation. The decay rate of vorticity, i.e. the left-hand side of the equation, was
inferred from the slope of the vorticity r.m.s. distribution in figure 12. The right-
hand side of (5.8), estimated from the distributions of S , G and Rλ, agrees to within
15% with the decay rate of vorticity; this indicates that experimental data conform
reasonably well with the isotropic form of (1.2).

As a further check of isotropy, relatively reliable estimates were made of the mean-
square values of ωi,1 (i = 1, 2, 3). As for figure 15, eighth-order polynomial fits to the
measured ωi spectra were used to extrapolate the distributions of k2

1φωi to sufficiently
large values of k∗1 to allow the areas under the curves in figure 17 to be calculated
more reliably. Since ωi is inherently solenoidal, isotropy requires that

〈ω2
2,1〉 = 〈ω2

3,1〉 = 2〈ω2
1,1〉.

The areas under the extrapolated distributions in figure 17 satisfy the above equality
within ±10%. The extrapolations in figure 17 represent about 4% of the total area
for 〈ω2

1,1〉 and about 8% for 〈ω2
2,1〉 and 〈ω2

3,1〉.

6. Global and local statistics of instantaneous enstrophy and energy
dissipation rates

We first consider here various global characteristics of ε and ω primarily in order
to establish the degree of correlation between these quantities. We also assess the
extent to which u2

1,1 can represent ε.
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Four spectral densities have been calculated:

φω(k1) = φω1
(k1) + φω2

(k1) + φω3
(k1), (6.1)

φε(k1) = ν[4φu1,1
(k1) + φu2,1

(k1) + φu3,1
(k1) + φu1,2

(k1) + φu3,2
(k1) + φu1,3

(k1)

+ φu2,3
(k1) + 2Cou1,2u2,1

(k1) + 2Cou1,3u3,1
(k1)− 2Cou2,3u3,2

(k1)], (6.2)

φεiso(k1) = 15νφu1,1
(k1), (6.3)

φεhom(k1) = ν[2φu1,1
(k1) + φu1,2

(k1) + φu2,1
(k1) + φu1,3

(k1) + φu3,1
(k1) + φu2,3

(k1)

+ φu3,2
(k1)− 2Cou2,3u3,2

(k1)]. (6.4)

The areas, from k1 = 0 to k1 = ∞, under these distributions are equal to 〈ω2〉, 〈ε〉,
〈εiso〉 and 〈εhom〉 (≡ ν〈ω2〉) respectively. After normalization of the spectral densities
and wavenumbers by Kolmogorov scales, the areas are equal to 1.03, 0.96, 1.0 and
1.0.

Although the areas under the curves are nearly equal, the shape of φ∗εiso differs
significantly from the other three distributions (figure 18). The main departure is
at low wavenumbers where the magnitude of φ∗εiso increases steadily with k∗1 until
it reaches the maximum at k∗1 ' 0.15. For k∗1 & 0.5, φ∗εiso merges with the other
distributions, reflecting the isotropy of small scales. φε and φω2 (or φεhom , which is not
shown) are nearly indistinguishable at all wavenumbers; this observation was also
made by Antonia, Browne & Shah (1988) and Zhu & Antonia (1997).

Spectra of the instantaneous signals corresponding to ε, εhom, εiso and ω2 were also
computed. The distributions, shown in figure 19, are normalized so that∫ ∞

0

ψα(k1)dk1 =
〈α2〉 − 〈α〉2

σ2
α

= 1 (6.5)

where α stands for any one of ε, εhom, εiso and ω2, and σα is the standard deviation of α
relative to its mean value. Note that ψε (which is nearly identical to ψεhom; ψεhom is not
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Figure 19. Spectra of energy dissipation rate and enstrophy fluctuations.
—, α ≡ ε; – –, ω2; — - —, εiso.

shown here) and ψω2 do not coincide; they cross over at k∗1 ' 0.1 before collapsing for
k∗1 & 0.5. The shape of ψiso differs completely from that of the other two distributions
in figure 19, suggesting that u2

1,1 is unlikely to be equivalent, on an instantaneous
basis, to ε.

The p.d.f.s of ε and ω2 are shown in figure 20; the normalization is such that∫ ∞
−∞ Pαdα = 1, where Pα is the p.d.f. of α. The p.d.f. of εhom differs only very slightly

from that of ε and has not been included in the figure to avoid confusion. The shape
of Pε deviates from that of Pω2 both near zero and at relatively large amplitudes.
The positive tails exhibited by Pε and Pω2 are nearly exponential, although the rate
of decay is smaller for Pω2 than Pε. This implies that high-order moments of ω2 will
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be greater than those of ε. Indeed, the flatness factor (here, the flatness factor Fα is
defined as Fα = 〈[α−〈α〉]4〉/〈[α−〈α〉]2〉2 where α = ω2 or ε) of ω2 is 40% higher than
that of ε.

The amounts of correlation between ε and ω2, εiso and ω2 and εhom and ω2 can
be inferred from the joint probability density functions (j.p.d.f.) of these quantities
(figure 21). The j.p.d.f. Pα,β (α and β = ω2, εhom, εiso or ε) is defined such that∫∫ ∞
−∞ Pα,βdγ ·dδ = 1, where γ and δ represent centred values of α and β, normalized by

their r.m.s. values. Not surprisingly, the correlation between εhom and ω2 is significant
with a coefficient ρεhom,ω2 (ρα,β = {(α− 〈α〉)(β − 〈β〉}/α′β′) of 0.8 (figure 21a). A larger
value might have been expected since 〈εhom〉 and 〈ω2〉 are equal within ±5%, thus
approximately satisfying homogeneity; note however that this equality applies to
corrected values of 〈εhom〉 and 〈ω2〉. It is quite possible that an even higher value of ρ
would have been obtained had we been able to correct the instantaneous fluctuations
for spatial resolution. The coefficient ρε,ω2 (figure 20b) is 0.6. While this is smaller than
ρεhom,ω2 , it indicates an important correlation between the energy dissipation rate and
enstrophy fields. It is pertinent to mention results from direct numerical simulations
of homogeneous isotropic turbulence. This information was recently reviewed by
Sreenivasan & Antonia (1997) and only brief comments are needed here. There is
general agreement that high vorticity intensity occurs in elongated tube-like structures.
However, only moderate ε regions appear to surround these tubes (e.g. Ruetsch &
Maxey 1991), Kida & Ohkitani (1992) noting that ε is double-peaked around the
tubes. Moderate vorticity intensity tends to be associated with sheet-like structures,
but even in this case, ε tends to concentrate (perhaps also in sheet-like fashion) in
the vicinity of the ω2 sheets. These observations point to an important, though far
from perfect, correlation between ε and ω2; this seems consistent with our measured
correlation coefficient. The contours of Pω2 ,εiso (figure 21c) are quite dissimilar to those
in figure 21(a, b). While the latter show a tendency towards alignment along 45◦, the
former emphasize a lack of correlation at either small or large values (for either
quantity); indeed, their appearance resembles that expected for independent variables
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Figure 21. Joint probability density functions of ε, εhom, εiso and ω2. (a) Pεhom,ω2 ; (b) Pε,ω2 ; (c) Pεiso,ω2 .
The correlation coefficients ρεhom,ω2 , ρε,ω2 and ρεiso,ω2 are equal to 0.8, 0.6 and 0.13 respectively.
Contour values (outer to inner) 0.0005, 0.005, 0.05, 0.2, 0.6.

(e.g. Tennekes & Lumley 1972; Anselmet & Antonia 1985). Accordingly, ρεiso,ω2 is
quite small (' 0.12), corroborating the expectation that u2

1,1 cannot be expected to be
instantaneously equivalent to ε.

7. Scaling of velocity increments and locally averaged energy dissipation
rate and enstrophy

The r-dependence of the moments of δu1 and δu2 may provide some insight into
the relative importance of εr and ω2

r in determining the scaling behaviour of the
longitudinal and transverse velocity increments especially in the context of the DNS
based observations (Boratav & Pelz 1997; Chen et al. 1997b) that δu2 appears to be
more influenced by vorticity whereas δu1 is dominated by the strain rate. Although
the present value of Rλ is too small for an inertial range to occur, an attempt to relate
the r-dependencies of 〈(δu1)

p〉 and 〈(δu2)
p〉 with those of εr and ω2

r should still be of
interest, given the established accuracy of ε and ω2 in the present flow.

Mydlarski & Warhaft (1996, hereafter MW) described grid-generated turbulence
for Rλ . 100 as weak in the sense that p.d.f.s of δu1 and δu2 are nearly Gaussian and
dissipation statistics depend only weakly on δu1 or δu2 by contrast to observations
for Rλ & 200. They also noted that a not particularly well defined scaling range (in
the spectra of u1 and u2) first appeared at Rλ ' 50.

A relatively good indicator of the scaling range is provided by the behaviour of
〈(δu∗1)3〉, namely

〈(δu∗1)3〉 = − 4
5
r∗, (7.1)

the so-called ‘four-fifths law’. The measured values (at x1/M = 70) of the product

C ≡ −〈(δu∗1)3〉r∗−1 are shown in figure 22. As expected, there is only a very small
plateau, centred at r∗ ' 20. The magnitude of C is significantly smaller than 4/5 so
that (7.1) is far from being satisfied. The data of MW indicate that C increases with Rλ.
The departure from (7.1) reflects a lack of isotropy; note that, here, the normalization
does not suffer from the uncertainty normally associated with estimating 〈ε〉 in non-
homogeneous shear flows. Also included in figure 22 is 〈|δu∗1|3〉, a quantity used by
Benzi et al. (1993) in the extended self-similarity (ESS) method for evaluating the
exponents of 〈|δu1|p〉 over the scaling range. Although there is no theory to describe
the behaviour of 〈|δu1|3〉, the variation of 〈|δu1|3〉 (figure 22) is qualitatively similar
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to that of 〈(δu1)
3〉; the centre of the plateau is slightly displaced (r∗ ' 25) and

C ′ ≡ −〈|δu∗1|3〉r∗
−1 is equal to about 8C . The region where C ′ ' const is used here

to define the range over which the exponents are evaluated. This constitutes a small
but important departure from the way ESS is generally applied. The claim (Benzi
et al. 1993) that the scaling is extended into the dissipative range becomes tenuous
as the magnitude of p increases. This was observed by Stolovitzky & Sreenivasan
(1993) and is discernible in the plot of log10〈|δu∗1|p〉 vs. log10〈|δu∗1|3〉 of figure 23. It
is more emphatic in the case of 〈|δu∗2|p〉 (figure 24). The curvature exhibited by the
transverse structure functions (figure 24) is not an artefact of the record duration,
which was sufficiently long (about 1.5 × 105 integral time scales) to ensure that the
integrands |δui|pP|δui| (where P|δui| is the p.d.f. of |δui| with i = 1, 2 or 3) converged for
p = 8, the largest value considered here. It represents a genuine departure from the
relatively linear behaviour exhibited (figure 23) by the longitudinal increments. The
scaling exponents ζu1

and ζu2
for the longitudinal and transverse velocity increments

respectively were estimated from least-squares regressions over the range (C ′ ' const)
indicated by the arrowed horizontal line; for these fits, r2 always exceeded 0.999
although the standard deviation associated with the value of the exponent increased
with p (for p = 8, the deviation was equal to ±0.8% for ζu1

and ±1.0% for ζu2
). Figure

25 clearly shows that ζu2
is appreciably smaller than ζu1

, the difference between these
exponents increasing with p. The values of ζu1

were in excellent agreement with those
(not shown here) obtained from a single wire; also the values of ζu2

were identical to
those of ζu3

(not shown here). The departure from predictions of Kolmogorov (1941,
hereafter K41) of ζu1

is similar to that reported previously for ζu1
over a range of

flows and Reynolds numbers (e.g. Anselmet et al. 1984; Frisch 1995; Arneodo et al.
1996; Sreenivasan & Antonia 1997) and seems to be adequately represented, at least
for p 6 8, by either the log-normal (Kolmogorov 1962, hereafter K62) model or the
She & Leveque (1994, hereafter SL) model.

Several suggestions have been put forward to explain the inequality ζu2
< ζu1

, which
implies that transverse velocity increments are more intermittent than longitudinal
velocity increments. Boratav & Pelz (1997) concluded that the inequality mainly
reflects the greater contribution to intermittency from enstrophy-dominated structures
than from strain-dominated structures. Chen et al. (1997b) proposed a modification
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to the refined similarity hypothesis (RSH) K62, which they called RSHT, in order to
relate transverse velocity increments to the enstrophy field. RSH is retained as the
link between longitudinal velocity increments and εr . These authors found that RSH
and RSHT were well supported by their DNS data. They also suggested that RSH
and RSHT may be treated as independent hypotheses leading to independent and
possibly different scaling exponents. It seems appropriate to consider whether RSH
and RSHT can explain the present differences between ζu1

and ζu2
. RSH and RSHT

imply that δu1 ∼ (rεr)
1/3 and δu2 ∼ (rω2

r )
1/3 respectively. Assuming that 〈(δu1)

p〉 and

〈(δu2)
p〉 scale as rζ

L(p) and rζ
T (p) in the inertial range, while 〈εpr 〉 and 〈(ω2

r )
p〉 scale as

rτ
d(p) and rτ

v(p) respectively, we can write

ζL(p) = 1
3
p+ τd( 1

3
p), (7.2)

and

ζT (p) = 1
3
p+ τv( 1

3
p). (7.3)
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p τd( 1
3
p) τv( 1

3
p) ζL ζu1

ζT ζu2

2 +0.012 (±4.8× 10−4) +0.019 (±3.9× 10−4) 0.678 0.683 0.686 0.423
3 −0.005 (±6.2× 10−4) −0.009 (±5.6× 10−4) 0.994 1.0 0.992 0.597
4 −0.040 (±7.1× 10−4) −0.061 (±7.0× 10−4) 1.293 1.303 1.272 0.752
5 −0.091 (±7.8× 10−4) −0.136 (±8.2× 10−4) 1.576 1.592 1.531 0.892
6 −0.158 (±8.3× 10−4) −0.231 (±9.2× 10−4) 1.842 1.871 1.769 1.020
7 −0.241 (±8.7× 10−4) −0.347 (±1.0× 10−3) 2.092 2.141 1.986 1.137
8 −0.340 (±9.2× 10−4) −0.480 (±1.0× 10−3) 2.327 2.405 2.187 1.245

Table 1. Longitudinal and transverse scaling exponents

The superscripts L and T have been introduced because the magnitudes of ζL(p)
and ζT (p) need not, in general, be the same as those estimated from the ESS. The
exponents τd and τv were inferred from the variations of 〈εpr 〉 (figure 26a) and 〈(ω2

r )
p〉

(figure 26b) with r over the same range (indicated in the figures) as that used to
estimate ζu1

and ζu2
. The values of τd( 1

3
p) and τv( 1

3
p) are given in table 1, the numbers

inside the brackets representing the corresponding standard deviations.
Also shown in table 1 are the values of ζL and ζT estimated using (7.2) and (7.3)

as well as the values of ζu1
and ζu2

(previously given in figure 25). For p > 3, ζT is
smaller than ζL (the difference is 6.4% for p = 8). Arguably, this trend may reflect
the more intermittent nature of ω2

r relative to that of εr . Some support for this is
provided by figure 27, the flatness factor of ω2

r remaining larger than that of εr .
Similar behaviour of Fω2

r
and Fεr was also found by Chen et al. (1997a). Note also

that in the range r∗ 6 20, the flatness factor of δu2 exceeds that of δu1. However, over
the scaling range, Fδu1 ' Fδu2 . For the simulation of Chen et al. (1997b), Fδu2 remains
slightly larger than Fδu1 throughout the inertial range. MW reported a nearly perfect
equality between Fδu2 and Fδu1 for a value of r within the inertial range and for Rλ in
the range 50–473.

While ζu1
' ζL (table 1), ζu2

is significantly smaller than ζT for all p. It is unlikely
that this discrepancy can be attributed, at least for the present small Reynolds number,
to the different degrees of intermittency of εr and ω2

r . A more likely source of the
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discrepancy may be that, for this small value of Rλ, any anisotropy in the flow will
tend to affect δu2 more than δu1. As noted by others (e.g. Herweijer & van de Water
1995), ζu1

(2) and ζu2
(2) should strictly be equal for homogeneous isotropic turbulence

since

〈(δu2)
2〉 =

(
1 +

r

2

∂

∂r

)
〈(δu1)

2〉. (7.4)

For the DNS data of Boratav & Pelz (1997) and Chen et al. (1997b), ζu1
(2) ' ζu2

(2),
even though Rλ is not especially large (82 for the former and 216 for the latter),
and (7.1) is much more closely satisfied than in the present experiment, apparently
reflecting the good isotropy achieved in the simulation. Equation (7.4) was used to
calculate 〈(δu2)

2〉 from measured 〈(δu1)
2〉 data. ESS was then applied, as outlined

earlier in this section, to the calculated data; this resulted in an increase in ζu2
(2) from

0.42 to 0.50. While the new value of ζu2
(2) is closer to the measured value of ζu1

(2)
than the original estimate, the shortfall remains significant. Possibly a better indicator
of isotropy in the inertial range is the magnitude of C ≡ 〈(δu∗1)3〉r∗−1, in particular
its proximity to 4/5, the constant in (7.1). The present values of C and those of
MW (50 6 Rλ 6 473) suggest that C approaches 0.8 slowly and would reach it only
when Rλ approaches 1000. Speculatively, the difference between ζu1

and ζu2
should

disappear when this occurs. It would seem that available data (e.g. Sreenivasan 1996;
MW) for inertial-range constants associated with the spectra of u1 and u2 provide
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some support for this conjecture. Further support is provided by the atmospheric
surface layer results of Dhruva et al. (1997).

8. Conclusions
The main conclusions of this paper can be summarized as follows.
The data obtained with a relatively simple four-X-wire vorticity probe in decaying

grid turbulence indicate that the probe performs satisfactorily in terms of its ability
to measure the mean turbulent energy dissipation rate and mean enstrophy reliably.
Satisfactory agreement (10%) between the measured values of 〈ε〉 or 〈ω2〉 and those
inferred from the mean turbulent energy decay rate was achieved after correcting the
measured derivative spectra for the spatial resolution of the probe.

Although 〈ε〉 ' 〈εiso〉, the components of 〈ε〉 exhibit a non-negligible departure from
isotropy. Both 〈ω2〉 and its three components appear to satisfy isotropy approximately.
Three of the measured components of the palinstrophy satisfy isotropy within ±10%.

Joint p.d.f.s of εiso and ε with ω2 as well as the spectra associated with these
quantities indicate that εiso is an inadequate substitute for ε.

The joint p.d.f. of ε and ω2 suggests a reasonably high correlation between these
quantities. The magnitude of the correlation coefficient (' 0.6) seems consistent with
evidence from direct numerical simulations of homogeneous isotropic turbulence that
regions of strong vorticity do not quite coincide with high energy dissipation rate
regions.

Over a range where 〈|δu1|3〉 varies linearly with r, the transverse exponents are
appreciably smaller than the longitudinal exponents for all values (2 to 8) of p,
the moment order. The inequality is larger than that which has been reported, for
higher values of Rλ, from either grid turbulence experiments or simulations of forced
homogeneous isotropic turbulence.

The present inequality ζu2
< ζu1

is not satisfactorily accounted for by RSHT, the
refined similarity hypothesis for transverse increments proposed by Chen et al. (1997b),
since the measured moments of εr and ω2

r exhibit only slightly different power-law
exponents over the scaling range. This slight difference seems commensurate with the
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approximate equality between the flatness factors of δu1 and δu2 in this range but
contrasts with the discernible difference between the flatness factors of εr and ω2

r .
Another source for the inequality ζu2

< ζu1
is the strong scaling-range anisotropy,

which reflects the small Rλ of the flow. As Rλ increases and/or the isotropy improves,
it is expected that the inequality will eventually disappear for shearless turbulence.
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